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Abstract:The authors consider the issue of map positional error, or the difference between location as rep-
resented in a spatial database (i.e., a map) and the corresponding unobservable true location. They propose a
fully model-based approach that incorporates aspects of the map registration process commonly performed
by users of geographic informations systems, including rubber-sheeting. They explain how estimates of
positional error can be obtained, hence estimates of true location. They show that with multiple maps of
varying accuracy along with ground truthing data, suitable model averaging offers a strategy for using all
of the maps to learn about true location.

Modélisation de l’erreur associée à la position d’un objet
sur une carte en vue de sa localisation
Résuḿe : Les auteurs s’int́eressent̀a l’erreur associéeà la position d’un objet sur une carte, c’est-à-direà la
diff érence entre sa position telle que représent́ee par ses coordonnées spatiales (c’est-à-dire sur une carte)
et sa v́eritable localisation inconnue dans l’espace. Ils proposent un modèle tenant compte de différents
aspects des procéd́es de cartographie tels que mis en œuvre dans les systèmes d’informatioǹa ŕeférence
géographique, y compris la correction géoḿetrique par membranéelastique. Ils expliquent comment esti-
mer l’erreur associée au relev́e et donc la position réelle d’un objet. Ils montrent qu’en opérant une moyenne
sur différents mod̀eles et en s’aidant de cartes de précision varíee et de donńees de contr̂ole au sol, on peut
arriverà d́eterminer la v́eritable position de l’objet.

1. INTRODUCTION

1.1. The positional error problem.

Geographic information systems (GIS) have become a popular and important way to store, ma-
nipulate, and analyse spatial data. See the two-volume introduction to GIS given by Longley,
Goodchild, Maguire & Rhind (1999a, b). The development of automated mapping and GIS has
resulted in an enormous amount of information stored in the form of spatial databases. Methods
for assessing the accuracy of these databases are comparably underdeveloped and the apparent
sophistication with which spatial data is depicted in the form of maps often conveys a sense of
accuracy that may be unwarranted. In response, the GIS community has begun to devote effort
to the issue of spatial database accuracy (Goodchild & Gopal 1989; Guptill & Morrison 1995).

Spatial data quality spans a broad range of topics (Goodchild & Gopal 1989; Thapa &
Bossler 1992; Guptill & Morrison 1995; Veregin 1999; Lowell & Jaton 1999; Mowrer & Congal-
ton 1999; Shi, Fisher & Goodchild 2002). The more statistically refined approaches to assessing
uncertainty are based mostly on existing methods in geostatistics (Atkinson 1999) and are applied
to quantitative attributes recorded at locations. However, in nearly all such methods, locations
are assumed to be known, or a priori measures of positional accuracy (Thapa & Bossler 1992;
Drummond 1995; Veregin 1999) are used to gain some insight into the uncertainty arising from
positional error. See, however, Kiiveri (1997) for a notable exception.

The contribution of this paper is to address the issue of map positional error, or the differ-
ence between location as represented in a spatial database (i.e., map) and the corresponding,
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unobservable true location, in the presence of reference location information of higher accuracy
than the map locations. Notions of positional uncertainty in lines originate with the idea of the
epsilon-band (Perkal 1966; Chrisman 1982; Blakemore 1984) which has been generalised by
various authors who typically assume some form of bivariate Gaussian distribution for the po-
sitional error components of the points that define a line (Caspary & Scheuring 1993; Leung &
Yan 1998; Shi 1998; Shi & Liu 2000).

Our data consist of feature locations on one or more maps as well as control points—so-
called ground-truthing—associated with a subset of the mapped feature locations. Here, we take
the control points to be Global Position System (GPS) measured locations, but, alternatively,
they might be locations on our highest quality map. Regardless, they are not viewed as the
true locations; there is still measurement error. Our objective is to explain positional error and
to infer the true location of feature coordinates represented on one or more maps, including
attaching realistic uncertainty to this inference. As we explain in Section 2, for us,true location
is not geodetic but rather true projected coordinates relative to a specified reference frame. Thus,
our contribution is focused on improved map making. For instance, bringing data from lower
quality maps to higher quality maps on which they are absent is an issue of interest in the GIS
community. We do not envision application of our approach to accuracy issues of concern in the
surveying and geodesy communities.

1.2. The modelling problem.

The problem of positional error associated with maps has received essentially no attention in the
statistical literature. That is, by now there is a large literature on modelling uncertainty associ-
ated with measurements at locations. See, e.g., the books by Cressie (1993) and by Banerjee,
Carlin & Gelfand (2004). All of this work assumes that the locations are correct, i.e., that the
location associated with the measurement is, in fact, the exact location where the measurement
was taken. Notable exceptions are the work of Gabrosek & Cressie (2002) and the follow-on
work of Cressie & Kornak (2003). These papers consider two location error models referred to
by Cressie & Kornak (2003) as the coordinate positioning error model and the feature positioning
model. In either case, the effort is to assess the effect on spatial prediction—point and interval
estimates—without interest in making inferences about true feature location.

To clarify our setting, with regard to a given map, we have three bivariate variables to con-
sider: a feature location on the map, an associated GPS location, and a true location for that
feature. At most the first two are observed. In fact, the set of GPS measured locations is only a
small subset of the feature locations on the map; rarely do we have a GPS location without an
associated feature location. Evidently, the relationship between true location and GPS location is
not map dependent; rather, it is a reflection of the accuracy of the GPS measuring equipment. The
process of explaining GPS locations using map features is referred to asregistrationof the map.
So, we can cast the map positional error problem as one of registering GPS locations against
the given map followed by inferring the true location—hence positional error—based upon our
knowledge of GPS accuracy.

Hence, associated with any map feature location, there is a potential GPS location that may
or may not have been observed. In the latter case we have a prediction problem within the
registration model for the map. Also, there is a true location associated with every map feature
and this always entails a prediction problem regardless of whether an associated GPS location has
been recorded. Furthermore, there is a potentialinverseproblem which may be of interest, i.e.,
learning about an unobserved feature location on a given map associated with an observed GPS
location. This inverse problem is accessed through the registration model for the map. However,
there is no inverse problem with regard to true location since the latter is never observed.

With interest in capturing uncertainty well, it is promising to formalise the modelling within
a Bayesian framework. For such modelling, it is straightforward to view feature location on a
map as an explanatory variable for GPS location, the latter viewed as a response. Given the
large number of map feature locations compared with the small number of GPS locations, attrac-
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tively this provides more prediction than inversion. It is also in agreement with the customary
GIS map registration approach; see, e.g., Dowman (1999). Then, the true location, since un-
known, is taken to be random, varying around the GPS location. Expressed in different terms,
we have a measurement error model in the response variable described using a “Berkson” speci-
fication (Fuller 1987; Carroll, Ruppert & Stefanski 1995). Alternatively, we could view the map
feature locations as driving the true locations with the GPS locations varying around the true
locations, the measurement error model perspective (again, Fuller 1987; Carroll, Ruppert & Ste-
fanski 1995). In this case, we would marginalise over the true locations, fit a registration model
with increased uncertainty and then back out the true locations. We anticipate inference with
regard to positional error will be very similar to that obtained using the Berkson specification.

A different modelling approach might be suggested, i.e., to view the map feature location
as the response with the GPS location as the observed covariate level and the true location as
the actual covariate level. This casts the problem in terms of measurement error in the covariate.
Then, analogously to the preceding paragraph, we have the possibility of modelling GPS location
as varying around true location (the measurement error model) or true location varying around
GPS location (Berkson). Regardless, the true location would be presumed to drive map feature
location; it doesn’t make sense to assume that the GPS location does. Unfortunately, such a
model is intractable to fit. That is, we anticipate spatial dependence in positional error; the error
vector associated with a given location is expected to be more highly associated with that of a
nearby location than with that of a more distant location. To capture such spatial dependence
we require a bivariate spatial process model. Such a model will in turn require a valid cross-
covariance function to provide association between pairs of positional errors and, indeed, withn
positional vectors, will result in an2n×2n cross covariance matrix for thesen 2×1 error vectors.
This matrix will have then true location vectors as its argument, apart from any parameters in the
covariance function. Implementing a Markov chain Monte Carlo algorithm to extract posterior
samples to learn about the true positional errors embedded in the likelihood in this fashion will
be hopeless—the identifiability will be very weak and the computational burden will be very
high. Attempting to fit the marginal model resulting from marginalisation over the true location
vectors is even less promising—no explicit integration is possible. The measurement error model
specification would make matters even worse. Now we would require a prior over then true
locations. This prior can not involve any map information—the best we could envision would be
a uniform prior over the entire map, further weakening the identifiability of the true locations. In
summary, the model of the previous paragraph appears to offer the only viable option and so we
confine ourselves to it in the sequel.

A related point arises here. With multiple maps, we propose registering each one separately
with regard to the GPS data, i.e., a different regression model for each map. Then, we suggest
Bayesian model averaging to perform the predictive inference for true location, hence for posi-
tional error associated with any of the maps. That is, each map is equivalent to a regression model
so model averaging is map averaging. However, with sayL maps, for mapi, i = 1, 2, . . . , L,
the collection of feature locations associated with the GPS locations, sayxi, can be viewed as
one ofL covariates to explain the GPS locations. Why not use all of the maps to explain the
GPS locations and thus to do predictive inference on true locations, rather than using model av-
eraging? Of course this is computationally feasible but there will be high multicollinearity in the
xi—after all, they are supposed to be the same set of locations—resulting in severe over-fitting
and very inflated predictive variances. Essentially, a single covariate model is likely to be among
the best in avoiding over-fitting. Indeed, the proposed model averaging averages over such mod-
els, yielding prediction with smaller uncertainty than that associated with any individual model
(map) and so is expected to be more attractive than a “multiple regression” approach.

We implement our approach within a Bayesian framework using hierarchical modelling, en-
abling a fully model-based examination of positional error. In terms of measurement error set-
tings, hierarchical modelling is discussed in, e.g., Gilks, Richardson & Spiegelhalter (1996)
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and in Gelfand & Mallick (1996). Our work may also play the role of a precursor to fully
model-based development of error propagation studies (Heuvelink, Burrough & Stein 1989;
Heuvelink 1999). Typically, these studies show how a priori positional uncertainty, often de-
termined from a map’s metadata, is propagated through various GIS operations on digital maps
(Hunter & Goodchild 1996; Stanislawski, Dewitt & Shrestha 1996). Like these existing meth-
ods, our method uses map positional error metadata and documented GPS performance to help
specify prior uncertainty with regard to both spatial and non-spatial error. We combine this prior
information with map and control point data via a Bayesian hierarchical model to obtain full pos-
terior inference regarding the true location associated with any map point, e.g., a point estimate
and a two-dimensional credible set. For a road, we can simulate posterior realisations of the true
road, for a city block, posterior realisations of the true block, again to achieve point estimation
and to assess variability.

We develop the model for a single map in Section 2, detailing prediction in Section 3. We
extend the model to the case of multiple maps using Bayesian model averaging in Section 4.
Section 5 turns to an application working with three neighbourhood maps in Durham, North
Carolina, along with GPS location data. We illustrate inference for point, road and city block
features. We conclude with a brief discussion in Section 6, noting problems to be considered for
future work in this area.

2. A MAP POSITIONAL ERROR MODEL

Over the following three subsections we assemble the proposed positional error model.

2.1. Notation.

ConsiderL maps or data layers of some region,X . Our interest centres on characterising the
positional error of features that are represented by coordinates on one or more maps. We discuss
positional errors of flat-map coordinates, so in this article,X will be taken to be a subset of some
2-dimensional coordinate system.

For example, a road intersection or a marker such as a utility pole is considered a point feature
in that its location is represented on a map as a single coordinate pair. One dimensional features,
e.g., roads and rivers, as well as two dimensional areal features, e.g., a property boundary, are
viewed the way they are stored in GIS software, through polygonal curves defined by the points
that determine the segments of the curves.

An important issue for us is notation. Following the Introduction, we have to denote the
following types of objects: map locations, control (GPS) locations, and true locations. GPS
locations and true locations are one-to-one but are not connected to any particular map. However,
for a given true location, hence GPS location, we potentially haveL different map locations.
We address this situation by considering map-specific transformations from map locations to
associated GPS locations, and similarly from map to true locations. We usex to denote an
arbitrary point on an arbitrary map, occasionally usingx = (x1, x2)

T to make explicit reference
to the east-west and north-south coordinates. In customary regression notation, we denote the
transformations for mapi to GPS locations and to true locations byygps,i(x) and ytrue,i(x),
respectively. If we assume thatx, ygps,i(x) andytrue,i(x) are in a common reference system
(e.g., UTM NAD 83), then the true positional error vector associated with locationx on mapi
is defined asytrue,i(x) − x. Again, following the discussion of the Introduction, in asking about
positional error,x will be provided, so our focus is on modellingytrue,i(x). We note that our
use of the terms “true” or “truth” will refer to projected coordinates and not to coordinates for an
unprojected geodetic location, which spatial scientists more commonly refer to as “truth.”

Though a map displays an uncountable number of locations, it is stored as a finite set of
locations or features. Hence, we assume mapi, i = 1, 2, . . . , L, to haveNi points,xij , j =
1, . . . , Ni. In practise, the corresponding observed number of control points is usually much
smaller thanNi. So, we denote the actual number of pairs of observed map locations and GPS
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locations for mapi by ni and write these pairs as(xij , ygps,ij), i.e.,ygps,ij is an abbreviation for
ygps,i(xij). These pairs are used to fit the registration model for mapi, but of course we seek to
learn about positional error for any of thexij . We remark that, for mapsi andi′, if xij andxi′j′

denote the same feature, thenygps,ij = ygps,i′j′ .

2.2. Prior information.

As noted in Section 1, the coordinates of the control points are not viewed as the true locations
but still have measurement error. Under the Berkson model, we write this asytrue = ygps +
η where theη are independent and identically distributed bivariate normal with mean0 and
covariance matrixσ2

gI2, whereI2 is the 2 × 2 identity matrix, andσ2
g is essentially known.

Such a specification is suggested by summaries of GPS data as discussed in the Trimble GPS
documentation (Trimble Navigation 1997a, b, 2003). While it is likely that in the covariance
matrix for η, the NSσ2 6= EW σ2 and that the off-diagonal entry is non-negligible (Soler &
Marshall 2002), in the absence of measured truth and given that we anticipate measurement error
to be a small component of map positional error, we retain this simple specification.

The Berkson specification is a conditional model, i.e., conditional onygps and, in the sequel,
we interpretσ2

g in this fashion. Also, it is evident that this specification is not associated with
any map. However, in terms of locations on mapi, we may write the relationship as

(ytrue,i(x) − ygps,i(x)) | ygps,i(x) ∼ N(0, σ2
gI2).

But then, under a registration model forygps,i(x) given x such as we develop in Section 2.3,
marginalisation overygps,i(x) yields a model for(ytrue,i(x)− x) |x, the desired positional error
model for mapi.

Maps typically come with positional uncertainty metadata, e.g., an associated RMSE
(root mean squared error) accuracy which provides prior information on the variance for
this marginal model. As an example of such information, consider the Digital Line Graphs
(DLGs) produced by the US Geological Survey (USGS). Locations on large-scale DLGs
“. . . shall be less than or equal to 0.003 inches standard error in both thex and y com-
ponent directions, relative to the source that was digitized” (Digital Line Graphs Standards,
http://rockyweb.cr.usgs.gov/nmpstds/dlgstds.html (04/28/04)), the “standard error” simply being the
square root of the mean squared differences between coordinates on the DLG and the corre-
sponding source map coordinates.

The source of most large-scale DLGs consists of USGS 7.5 minute topographic quadrangle
maps having a scale of 1:24000 and are stated to comply with National Map Accuracy Standards
so that “. . .not more than 10 percent of the points tested shall be in error by more than 1/30
inch, measured on the publication scale; for maps on publication scales of 1:20,000 or smaller,
1/50 inch” (National Map Accuracy Standards,http://rockyweb.cr.usgs.gov/nmpstds/nmas.html

(04/28/04)). This translates to 40ft at the scale of 1:24000. If we assume a bivariate Gaussian
distribution for the total positional error vector having uncorrelated components with common
scale, this corresponds to the 90% error circle ofN(0, (18.64ft)2I2). At the same map scale,
the DLG production process nominally introduces a standard error less than 6ft. Thus, if we are
willing to assume that error components are uncorrelated normal variates with common variance,
and if we consider the DLG production process to be independent of the production of quadran-
gle maps, then we might conclude that a large-scale DLG has a variance less than about202ft2

(18.642 + 62) or about62m2. In the sequel, we denote this a priori total positional error vector
variance component for mapi asσ2

t,i. Of course, the model we work with for(ytrue,i(x)−x) |x
incorporates a general covariance matrix for total positional error.

2.3. Model development.

With fitting data for mapi denoted by(ygps,ij , xij), j = 1, . . . , ni, a typical procedure for
adjusting map points given a set of control points would first fit a global model for theygps,ij to

http://rockyweb.cr.usgs.gov/nmpstds/dlgstds.html
http://rockyweb.cr.usgs.gov/nmpstds/nmas.html
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thexij , so-calledregistration, yielding fitted values, say,̂yij ≡ ŷi(xij), j = 1, 2, . . . , ni, and,
in fact, for any featurex on mapi the predictor̂yi(x). The six-parameter affine transformation
below is commonly used in this context—though our modelling formulation can be used with
other choices of transformation; and, in anticipation of the notation used in our fully developed
model below, we denote it asµi(xij) ≡ (µi1(xij), µi2(xij))

T , where

µi1(xij) = βi10 + βi11xij1 + βi12xij2,

µi2(xij) = βi20 + βi21xij1 + βi22xij2; (1)

see,e.g., Dowman (1999). In a typical GIS implementation, theβ parameters are fitted via least
squares, and the goodness of the transformation is typically reported as the root mean squared
error, (

1

ni

ni∑

j=1

(ygps,ij − ŷij)
T (ygps,ij − ŷij)

) 1

2

.

A transformation like (1) may be considered a large-scale adjustment to make a map to match
the control points in some overall average sense—rotation, scaling, shifting.

The next step in the adjustment procedure is referred to as “rubber-sheeting”, i.e., local ad-
justment (White & Griffin 1985), which is apart from registration, and results in revisingŷi(x)

to, say,ˆ̂yi(x). This informal procedure is not model-based; the functionˆ̂yi( · ) is not explicitly
defined. However, this procedure does reflect the expectation that, after large-scale adjustment,
small scale misalignments will still exist. Since this informal procedure is inherently spatial, in
moving to a formal model to capture this residual misalignment, it is appropriate to introduce
spatial structure. Additionally, we may choose to constrain some of the transformedxij to match
exactly the correspondingygps,ij , with remaining points on mapi being pulled along in some lo-
cal way. This is inherent in rubber-sheeting procedures (White & Griffin 1985) in GIS whereby
transformations are applied piecewise to local regions defined by some tessellation of the map
where the constraints occur at the vertices of the tessellation tiles.

Hence for eachxij we have

ygps,ij = ŷij + (ygps,ij − ŷij)

= ŷij + (ˆ̂yij − ŷij) + (ygps,ij − ˆ̂yij),

whereˆ̂yij ≡ ˆ̂yi(xij). So in explainingygps,ij , we have a global estimate,ŷij , a rubber-sheeting
adjustment,(ˆ̂yij − ŷij), and a residual error,(ygps,ij − ˆ̂yij).

As an explanatory model forygps,i(x), this motivates, the GPS location associated with map
locationx on mapi,

ygps,i(x) = µi(x) + vi(x) + εi(x), (2)

whereµi(x) is a parametric global surface for mapi, vi(x) is a bivariate spatial process—details
below—to provide a model-based adjustment to the global estimate rather than an ad hoc one,
andεi(x) is a non-spatial or pure noise process. As alluded to above, we use (1) forµi(x).

The specification (2) does not force revised map locations to exactly match the associated
observed GPS locations at, say, a set of vertices as in a typical rubber-sheeting algorithm. How-
ever, if we setεi(x) = 0, and takevi(x) as a mean-square continuous bivariate spatial process,
then the model behaves much like rubber-sheeting. That is, if we observe(ygps,i(xij), xij),
j = 1, . . . , ni, in the absence of pure error, the interpolated position for eachxij is exactly
ygps,i(xij); the model “honor[s] the data” just as in (co-)kriging without measurement error
(Cressie 1993,§ 3.2.1). And prediction ofygps,i(x0) for some map pointx0 is most influenced
by the control pointsygps,i(xij) corresponding to thexij closest tox0. Thus, notions of “pin-
ning” and local adjustment are preserved as in rubber-sheeting. Adding the noise termεi(x)
enables residual explanation that need not be entirely spatial. This is arguably more flexible and
more realistic. In practise, approximate pinning will occur; see Figure 2 below.
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We use the flexible linear model of coregionalization (Wackernagel 2003) to provide an
isotropic specification for the spatial dependence in thevi(x), hence in theygps,i(x). In par-
ticular, we employ a version of the linear model of coregionalization developed in Banerjee,
Carlin & Gelfand (2004,§ 7.2). Letwi(x) = (wi1(x), wi2(x))T , wherewi1(x) andwi2(x) are
uncorrelated spatial processes with mean zero, unit variance and spatial correlation functionsρi1

andρi2. For convenience, we assumeρik is an exponential correlation function with scalar range
parameter,φik. Coregionalization creates a bivariate spatial process by linear transformation of
two independent univariate processes. More precisely, we modelvi(x) via the linear model of
coregionalization as

vi(x) = Aiwi(x)

whereAi is the map-specific2× 2 coregionalization matrix providing the unknown linear trans-
formation and without loss of generality, can be taken to be lower triangular. Thus, coordinate-
wise, we have

vi1(x) = ai11wi1(x),

vi2(x) = ai21wi1(x) + ai22wi2(x).

We take the coordinates of the map-specific pure errorεi(x) to be mutually and internally uncor-
related error processes with scale parametersσεik, k = 1, 2.

In this model we have

vi(x) ∼ N(0, Ti), and

εi(x) ∼ N(0, Gi),

whereTi = AiA
T
i , andGi is the diagonal matrix with componentsσ2

εik
, k = 1, 2. So, the

variance associated with a GPS location as explained under the model for mapi is

Σygps,i(x) = Ti + Gi.

But then sinceΣytrue,i(x) | ygps,i(x) = σ2
gI2, we have

Σytrue,i(x) = σ2
gI2 + Ti + Gi,

the marginal positional error covariance alluded to earlier. Evidently, in offering (2), along with
a GPS error model, as a fully specified stochastic analogue to the usual map positional error
assessment, our modelling has yielded a more complex positional error structure thanσ2

t,iI2,
whereσ2

t,i corresponds to the total positional uncertainty derived from the metadata for mapi
(See Section 2.2). However, the latter can be used to help with the prior specifications by viewing

ti11 + σ2
εi1 ≈ σ2

t,i − σ2
g ,

ti22 + σ2
εi2 ≈ σ2

t,i − σ2
g , (3)

whereti11 andti22 are the diagonal elements ofTi. Thus a priori we centre each ofti11, ti22,
σ2

εi1 andσ2
εi2, around1

2 (σ2
t,i − σ2

g).
Such a prior suggests a neutral opinion regarding the relative size of the spatial and pure error

contributions. See Section 5.1 for detailed prior specification. Following the discussion above,
we might specify the prior to encourage a relatively larger variance component for thet since
rubber-sheeting (as an ad hoc spatial operation) attempts to remove the pure error and pinsˆ̂yij to
ygps,ij at the control points. However, as we argued above, this does not suggest removingεi(x).
Ad hoc rubber-sheeting will not be perfect for allx, so by analogy, why should we insist that the
spatial process correction be perfect? The prior also suggests no opinion regarding differential
uncertainty according to direction.
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3. PREDICTION OF TRUE LOCATION

Again, our primary goal is the prediction of the true location associated with location, sayx0 on
mapi. As a result, we seek the predictive distribution forytrue,i(x0); we would not be interested
in ygps,i(x0). In particular, our point estimate is

E(ytrue,i(x0) |Di) = E(ygps,i(x0) |Di)

= E E(ygps,i(x0) |µi(x0), vi(x0), Di)

= E(µi(x0) + vi(x0) |Di), (4)

whereDi is the data,{(ygps,ij , xij) j = 1, . . . , ni}. However, uncertainty is decreasing as we
progress from[ytrue,i(x0) |Di] to [ygps,i(x0) |Di] to [µi(x0) + vi(x0) |Di], using[ · ] to denote
a density or mass function.

To quantify the uncertainty associated with each of these distributions, we would obtain
posterior samples using the usual composition with posterior draws of theβi, theTi and theGi.
In particular, we want to sample from

[
ytrue,i(x0) |σ

2
g , Di

]
=

∫ [
ytrue,i(x0) | ygps,i(x0), σ

2
g

]
·
[
ygps,i(x0) |Di

]
dygps,i, (5)

but
[
ygps,i(x0) |Di

]
=

∫ [
ygps,i(x0) |µi(x0),Σygps,i(x0)

]
·
[
{βikl}, Ti, Gi |Di

]
dθi,

where we useθi generically to denote the vector of posterior parameter values over which the
integration occurs.

For a linear feature, e.g., the line on mapi betweenx0 andx∗
0, we will obtain a posterior

sample of lines by connecting the sampled pairsytrue,i(x0) andytrue,i(x
∗
0). For a city block,

similarly, we will obtain a posterior sample of rhombi. Note that sampling the posterior predictive
distribution

[
ytrue,i(x0) |σ

2
g , Di

]
can be done after we have fitted the model to explainygps,i(x)

for mapi, i.e., after we have collected the posterior samples of the model parameters. It is also
clear that each map model is fitted separately. There are no common parameters across models,
and there is no natural additional level of hierarchical specification to link the models.

With ni fitting pointsxij for map i, i = 1, . . . , L, and with the assumption of Gaussian
distributions for all processes, we writẽvi = (vT

i (xi1), . . . , v
T
i (xini

))T so that

ṽi ∼ N

(
0,

2∑

k=1

Rik ⊗ Tik

)
,

whereRik is anni × ni matrix with entriesρik(xij − xij′), j, j′ = 1, . . . , ni, andTik = aikaT
ik,

whereaik is thekth column ofAi and⊗ denotes the Kronecker product; see Banerjee, Carlin &
Gelfand (2004,§ 7.2). With ỹgps,i andµ̃i defined analogously tõvi, the conditional distribution
of ỹgps,i givenµ̃i andṽi is

ỹgps,i | µ̃i, ṽi ∼ N(µ̃i + ṽi, Ini×ni
⊗ Gi).

Assuming prior independence of parameters, we have the probability model for mapi,

[
ỹgps,i, | ṽi, {xij}, {βikl}, Gi

]
·
[
ṽi | {φik}, Ti

]
· [Ti] · [Gi]

2∏

k=1

[φik] · [β̃ik],

where, again,Ti = AiA
T
i =

∑2
k=1 aikaT

ik =
∑2

k=1 Tik, andβ̃ik ≡ (βik0, βik1, βik2)
T . Inte-

grating over̃vi gives,

ỹgps,i ∼ N

(
µ̃i,

2∑

k=1

Rik ⊗ Tik + INi×Ni
⊗ Gi

)
,
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and the marginal model of the form

[
ỹgps,i| {xij}, {βikl}, {φik}, Ti, Gi

]
· [Ti] · [Gi]

2∏

k=1

[φik] · [β̃ik]. (6)

We assign weak independent scaled inverse-chi-square distributions for the pure error vari-
ancesσ2

εik
in Gi, centred around the prior information—see (3) and surrounding text—with

infinite variance. Vague independent normal distributions are assigned to the parametersβikl of
the affine transformation (1). Independent gammas are assigned to the range parametersφik, and
we use Metropolis–Hastings steps for sampling. An informative inverse-Wishart prior is used for
the coregionalization matrixTi. We use Metropolis–Hastings steps for each of the components
ai11, ai22, andai21 of the matrixAi; we use lognormal proposals for each of first two and a nor-
mal proposal for the latter. These require a factor of|J |, whereJ = 4a2

i11ai22 is the Jacobian of
the transformation fromAi to Ti. The random effects̃vi are sampled from the conjugate normal
that results. We specify the particular priors in Section 5.

Alternatively, we could have used (6) to avoid sampling the random effects and then used
Metropolis–Hastings steps for theσ2

εik
with a similar sampling scheme as above for the re-

maining quantities. Regardless, we can sample the predictive distribution forygps,i(x0) af-
ter the Markov chain Monte Carlo routine in a one-for-one fashion. Then, sampling from[
ytrue,i(x0) | ygps,i(x0), σ

2
g

]
yields posterior draws forytrue,i(x0) and subtractingx0 for the po-

sitional error atx0.

4. BAYESIAN MODEL AVERAGING FOR MULTIPLE MAPS

At this point, for each mapi, i = 1, . . . , L, we have a fitted model for the collection ofni

observed control points̃ygps,i with the corresponding collection of map points,x̃i. Beyond
handling positional error for a given map, we may be interested in improving the prediction of
true locations by using all of the maps. Indeed, true location is the same regardless of map model
suggesting the use of Bayesian model averaging (Raftery, Madigan & Hoeting 1997). In order to
glean any information about a particular true location from mapi, however, we must know the
map feature location on mapi associated with this true location. That is, customary Bayesian
model averaging assumes that we work with the same data for each model. In the multiple map
case, feature locations change across maps, and we may have maps that do not share features
with other maps.

Suppose thatytrue,0 is associated with a feature location on all maps, sayxi0 for mapi; if
it is associated with a location only on a subset of theL maps, we will use that subset to do the
model averaging. LetMi denote the map-model for mapi as developed in Section 2, and let
[Mi] be the a priori probability mass for map-modelMi. We can use a uniform prior over the
maps or perhaps one that reflects our prior confidence in the maps, say using the map root mean
squared error in some fashion. The predictive distribution ofytrue,0 follows in the standard way
from an average of the predictive distributions for each model weighted by the posterior model
probability,

[
ytrue,0 |σ

2
g , D

]
=

L∑

i=1

[
ytrue,i(xi0) |σ

2
g , D,Mi] · [Mi |D

]
,

where, though we might writeDi to denote the data associated with fitting modeli, it is nota-
tionally convenient to simply letD denotẽygps since we are thinking of thẽxi as fixed. The first
factor in the summand is given by (5), and the posterior probability for modelMi is

[Mi |D] =
[D |Mi] · [Mi]∑L
l=1[D |Ml] · [Ml]

;

and

[D |Mi] =

∫
[D | θi, Mi] · [θi |Mi] dθi
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is the integrated likelihood for modelMi, θi is the collection of all parameters for modelMi

with [θi |Mi] being the joint prior, and[D | θi, Mi] is the likelihood for map-modeli, i.e.,
[D | θi, Mi] =

[
ỹgps|x̃i, θi,Mi

]
.

This model averaging may be interpreted as averaging over different regression models. Each
regression model is associated with a map. Each regression model uses a different covariate. The
covariate for a particular regression model is the set of map locations used for the associated map.
The approach of Chib (1995), more precisely Chib & Jeliazkov (2001) can be used to compute
marginal likelihoods. Simultaneous prediction at a collection of locations follows similarly, only
requiring sampling from conditional multivariate Gaussian distributions.

5. APPLICATION

We illustrate our approach using three maps of a residential neighbourhood in Durham, North
Carolina (Figure 1).
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FIGURE 1: Abridged map of a neighbourhood in west Durham, NC, showing, under common reference,
the map derived from GPS coordinates and three maps from existing spatial databases. 20 circles indicate

(GPS) control points used for model fitting, and 24 triangles indicate remaining GPS points.

One (i = 1) is a large-scale (1:24000) USGS Digital Line Graph (DLG) (http://edcftp.-

cr.usgs.gov/pub/data/DLG/LARGE SCALE/N/northwest durham NC/transportation/867112.RD.sdts.tar.gz

(01/20/04)), another (i= 2) from a Census 2000 TIGER/Line database (http://esri.com/data/-

download/census2000 tigerline/index.html, North Carolina, Durham County, Line Features-Roads
(12/17/03)), and the third (i= 3) from StreetMap USA (Environmental Systems Research
Institute 2003), an enhanced version of the Census 2000 TIGER/Line database. Each map
shares the same 44 street intersections for which we also obtained control points using the
mean of approximately 200 differentially corrected GPS coordinates for each intersection. All
maps and control points were transformed to a common reference system (NAD 83, UTM
metres) before analysis. Under the common reference system, Figure 1 shows the three maps,
the GPS-based map, and the 44 GPS points. To work with smaller eastings and northings, all
coordinates, including GPS, were then centred by the overall mean coordinates of all three maps,
not including GPS. We used a common subset ofni = n = 20 control points and corresponding
map points to fit the three models and for each we generated posterior predictions of true values
using (5) at the remaining 24 locations.

http://esri.com/data/download/census2000_tigerline/index.html
http://esri.com/data/download/census2000_tigerline/index.html
http://edcftp.cr.usgs.gov/pub/data/DLG/LARGESCALE/N/northwest_durham_NC/transportation/867112.RD.sdts.tar.gz
http://edcftp.cr.usgs.gov/pub/data/DLG/LARGESCALE/N/northwest_durham_NC/transportation/867112.RD.sdts.tar.gz
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5.1. Priors and starting values.

Prior map information suggests that the DLG (i= 1) has the highest positional accuracy, while
the TIGER/Line file (i= 2) and the StreetMap USA file (i= 3) may be expected to have similar
accuracy. We use the National Map Accuracy Standards as metadata for source map accuracy
(http://rockyweb.cr.usgs.gov/nmpstds/nmas.html (04/28/04)) and use the DLG Standards as metadata
for production accuracy of DLGs from source maps (http://rockyweb.cr.usgs.gov/nmpstds/dlgstds.html

(04/28/04)). Assuming that source map errors and production errors are independent allows us
to express a priori the source map and production accuracy metadata as the variance of a circular
bivariate Gaussian distribution of positional error and suggests that the DLG has prior accuracy
corresponding to a variance ofσ2

t,1 ≈ 62m2; see Section 2.2.
The prior information is less clear for the TIGER/Line and the StreetMap USA databases.

The source maps for these two particular databases are uncertain, but we rely on the fact that
many of the sources for these databases have a scale of 1:100000; we assume this scale for the
source of these files. This implies a prior variance of about242m2. Also, although we do not
know the production standards as in the case of the DLG, we still assume “0.003 inches standard
error” due to the production process from the source; this implies a variance of about82m2 at
1:100000. Together these suggest that a prioriσ2

t,2 = σ2
t,3 ≈ 252m2. The processing software for

GPS positions indicates a positional accuracy corresponding to a variance of aboutσ2
g = 0.72m2,

which we assume is known (Trimble Navigation 1997a, b, 2003); some exploratory analysis of
the GPS positions suggests that this is a reasonable value.

Thus, according to the discussion near (3), we centre the priors for eachσ2
εik

at means of
1
262, 1

2242 and 1
2242 for i = 1, 2, 3, respectively,k = 1, 2. We take the degrees of freedom to

be 4, the same as that given to the inverse-Wishart prior for theTi coregionalization matrices;
see below. As a result, the priors corresponding to the above means and degrees of freedom are
Inv−χ2(4, 9), Inv−χ2(4, 144), andInv−χ2(4, 144), whereInv−χ2( · , · ) denotes the scaled
inverse-chi-squared distribution. These priors are weak in that they have infinite variance. The
parameterisations of all distributions follow Gelman, Carlin, Stern & Rubin (1995).

We use inverse-Wishart priors for the coregionalization matricesTi ∼ IWνi
(S−1

i ), i =
1, 2, 3, whereνi = 4, degrees of freedom, and, again, according to the discussion near (3),
S1 = 1

262I2 andS2 = S3 = 1
2242I2 whereSi is the scale matrix of the inverse-Wishart;νi > 3

is required for a proper distribution in two dimensions. We adopt a vague normal distribution for
the parameters of the affine transformation with mean E(βi10, βi11, βi12, βi20, βi21, βi22)

T =
(0, 1, 0, 0, 0, 1)T and variance1002I2 ⊗ (XT

i Xi)
−1, whereXi denotes theni × 3 regression

design matrix formed by augmenting a column of ones with the two columns of the centred map
coordinates for mapi. Finally we take independent gamma distributionsΓ(1, 0.00575) for the
range parametersφik. This corresponds to a mode of 0.00575 at 0m, tapering to 0.000575 at
400m, roughly half the diameter of the study area.

Starting values for the parameters and spatial random effects were determined by using the
GPS control points and map points as data in maximum likelihood estimation applied separately
to each coordinate. With regard to sensitivity, we tried other starting values with no practical
effect on the final results.

5.2. Results.

To assess convergence of three chains for each map model, we used the potential scale reduc-
tion factor (Gelman & Rubin 1992) and its multivariate version (Brooks & Gelman 1997), as
implemented in the CODA add-on package of the R Package for Statistical Computing (R De-
velopment Core Team 2004). Convergence was achieved if each of the univariate factors and the
multivariate version were less than 1.1. This occurred between 5000 and 10000 iterations. We
continued sampling one chain for another 50000 iterations and present results based on every
50th draw beyond 10000 for a total of1000 samples from the posterior. Posterior summaries for
each map are given in Tables 1–3.

http://rockyweb.cr.usgs.gov/nmpstds/nmas.html
http://rockyweb.cr.usgs.gov/nmpstds/dlgstds.html
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Although we are primarily interested in positional error, examination of the tables reveals
several interesting points. First, as anticipated, map 1 is superior with regard to the extent of
uncertainty. Maps 2 and 3 are similar in their performance. Indeed their global (affine) transfor-
mations are essentially the same and both are quite different from that of map 1. For all three
maps, spatial variation is roughly of the same magnitude as pure error variation. Evidently, a
pure error component is needed; a purely spatial model would not be adequate; i.e.,εi(x) is not
zero. Association between the north-south spatial correction and the east-west spatial correction
does not emerge as significant for any of the maps as indicated by zero being contained within
95% credible intervals of each of the marginal posterior distributions of theti21, i = 1, 2, 3. For
each map we can compare the prior uncertainty (σ2

t,i − σ2
g) with the estimated uncertainty, the

posterior mean oftijj +σ2
εi,j

; see (3). The magnitude of the posterior mean was about 35% of the
corresponding prior quantity for map 1 and about 20% for maps 2 and 3, each prior value exceed-
ing its corresponding posterior 95% credible interval; evidently, some of the posterior variability
is explained by the large-scale transformation. Figure 2 attempts to demonstrate the approximate
pinning that results from the map models. In particular it shows again the GPS coordinates and
the estimated coordinates under map 1, the latter using expression (4).

TABLE 1: DLG map model (i= 1) posterior summary.

Name 2.5% 50% Mean 97.5% IQR

β110 -5.77464 -2.41488 -2.47180 0.39073 1.61296

β111 0.99473 1.00238 1.00223 1.00938 0.00474

β112 -0.01048 -0.00317 -0.00324 0.00385 0.00474

β120 -4.48818 -1.65955 -1.67575 0.99796 1.57486

β121 -0.00566 0.00139 0.00115 0.00739 0.00402

β122 0.99546 1.00190 1.00196 1.00836 0.00408

t111 2.24364 5.84744 6.76246 16.47642 3.98051

t122 2.01010 4.69761 5.38192 12.31547 3.09828

t121 -3.89903 0.31556 0.26765 4.35008 2.20939

φ111 6.43267 206.74364 265.39230 847.37141 281.39840

φ112 8.39029 295.97271 339.80958 980.00578 340.93933

σ2

ε11 3.92300 7.71274 8.37712 16.98480 3.82208

σ2

ε12 2.74388 5.26588 5.74685 11.29316 2.61991

Turning to Bayesian model averaging, the log marginal likelihood values for the three maps
are−125.303 (i = 1), −165.220 (i = 2), and−165.260 (i = 3). At these magnitudes, the pos-
terior probability on model 1,[M1 |D], becomes essentially 1 under any reasonable prior masses
[Mi], i = 1, 2, 3. Although this result is extreme and renders model averaging uninteresting,
it agrees with our prior information about map accuracy and with the ensuing data analysis re-
garding map positional accuracy in Tables 1–3. Furthermore, the log integrated likelihood values
may be viewed as comparative summary measures of positional accuracy among maps.

With regard to posterior prediction for the true positionsytrue(x0) corresponding to the 24
points not used in the modelling procedure, for each map 1000 posterior draws were taken and
are summarised in the left column of Figure 3, which shows the 95% credible ellipses for true
position corresponding to a bivariate normal approximation with mean and covariance computed
from the draws. The GPS locations are marked with a+, map points with a×. The greater
uncertainty attached to maps 2 and 3 is again revealed. Moreover, the ellipses do not include
several of their respective locations on maps 2 and 3; we note that this not an indication of poor
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model performance but rather of poor map accuracy relative to our ability to predict true location
with our models. As an indication of our models’ predictive performances, we also computed
the percentage of the 24 GPS points that fall within their respective GPS credible ellipses (not
shown); all 24 GPS points on each of maps 2 and 3 fall within their respective approximate 95%
credible ellipses, and all but 1 on map 1—upper left+—fall in their respective ellipses.

TABLE 2: Census 2000 TIGER/Line map model (i= 2) posterior summary.

Name 2.5% 50% Mean 97.5% IQR

β210 -33.73493 -25.64748 -25.26651 -16.24736 4.88061

β211 0.97435 0.99421 0.99431 1.01396 0.01296

β212 -0.02097 -0.00092 -0.00097 0.01937 0.01374

β220 0.14591 7.85315 7.92533 16.27515 4.84033

β221 -0.02845 -0.00759 -0.00748 0.01293 0.01371

β222 0.96065 0.98355 0.98328 1.00375 0.01414

t211 21.21069 50.69426 59.14515 145.98051 31.05766

t222 21.21852 52.54299 61.03950 142.86673 36.27523

t221 -61.15067 -4.91423 -7.03907 32.46757 23.00002

φ211 14.91414 294.00309 343.20092 987.49207 327.03972

φ212 8.54822 219.71499 274.40208 841.34769 279.74376

σ2

ε21 27.41238 52.05636 57.38080 118.65918 26.83870

σ2

ε22 32.18997 64.31691 69.13918 136.93742 31.40737

TABLE 3: StreetMap USA map model (i= 3) posterior summary.

Name 2.5% 50% Mean 97.5% IQR

β310 -36.82311 -27.73408 -27.81309 -18.22047 5.31887

β311 0.97524 0.99726 0.99693 1.01768 0.01456

β312 -0.02617 -0.00313 -0.00307 0.02057 0.01458

β320 -2.30644 5.65140 5.78789 14.70039 4.64570

β321 -0.01990 -0.00095 -0.00115 0.01746 0.01247

β322 0.96979 0.98933 0.98918 1.00974 0.01353

t311 24.72349 61.81600 71.04935 181.72174 41.99450

t322 19.56648 47.90725 54.44182 131.17618 32.07139

t321 -59.21178 -5.46084 -6.20454 39.59914 22.79119

φ311 22.07114 301.37057 339.04532 956.27422 301.73922

φ312 6.79166 244.36028 303.00395 864.45841 315.41917

σ2

ε31 30.39977 61.59778 66.46791 127.44995 32.52752

σ2

ε32 27.63693 54.83787 59.28992 117.12683 27.64765
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FIGURE 2: GPS-based map as in Figure 1 with map formed by posterior point estimates for map 1 using
the relationship in (4). 20 circles centred on the point estimates illustrate approximate pinning

corresponding to GPS points.
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FIGURE 3: Left column: 95% credible ellipses based on normal approximation to posterior predictive
draws of true locations for maps 1–3, top to bottom;+ indicates GPS location,× map location. Right:

corresponding 95% credible region for selected block indicated by enclosing rectangle at left. Solid
rectangle: GPS. Dashed: map.

The subrectangle in each of the three plots on the left reveals the block feature we seek to
predict. It is blown up in the respective right columns to show the 95% credible region for the true
block. The region for the block was produced from approximate 95% credible ellipses for each
edge point, sayx, defined as a linear combination of the two vertices, sayv1 andv2, that define
the edge:x = pv1+(1−p)v2, where0 ≤ p ≤ 1. These results attempt to capture the uncertainty
in predicting the true block location and, again, illustrate the relative superior positional accuracy
of the DLG (i= 1) map. Note the shape of the credible regions for lines connecting two vertices:
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the regions are more narrow near the middle of the line (Figure 3, right); this shape is similar
to existing characterisations of uncertainty for linear features, such as the modified epsilon-band
(Caspary & Scheuring 1993; Leung & Yan 1998; Shi 1998; Shi & Liu 2000) and the G-band of
Shi & Liu (2000).

While a map may have poor point positional accuracy, this need not imply correspondingly
poor accuracy for relative measures like areas and distances. To this end, Table 4 gives predictive
summaries of the area for the polygons shown in the right column of Figure 3. Table 4 sum-
marises the predicted length of the top edge of these polygons. Values based on the GPS control
points and each set of corresponding map points are given in the captions of the tables. Thus,
we see that the absolute positioning of a map may be poor in the sense that true point credible
ellipses may not contain corresponding map points, but that relative measures like area and dis-
tance may be more accurate in the sense that the credible intervals for these quantities do contain
their corresponding map quantities, with, again, much higher uncertainty for maps 2 and 3.

TABLE 4: Posterior area (square metres) summary of the polygons shown in the right column of Figure 3.
Observed values: 21887.98(GPS), 22249.31(i= 1), 22454.71(i= 2), 22910.02(i= 3).

Map 2.5% 50% Mean 97.5% IQR

1 21194 22356 22350 23638 755

2 18069 21828 21804 25286 2296

3 19427 22735 22795 26397 2215

TABLE 5: Posterior linear distance (metres) summary of the top edge of the polygons shown in the right
column of Figure 3. Observed values: 109.0402(GPS), 108.0185(i= 1), 99.71289(i= 2),

108.3128(i= 3).

Map 2.5% 50% Mean 97.5% IQR

1 101.8 108.4 108.5 115.4 4.0

2 79.8 99.8 99.9 118.9 11.1

3 88.6 109.1 109.3 130.0 12.8

6. DISCUSSION

We have developed a flexible model for map positional error capturing global transformation,
rubber-sheeting and GPS measurement error. We have described how available information on
map accuracy can be used to provide useful prior information on the associated variance com-
ponents. In the case of multiple maps, we have shown how to use Bayesian model averaging to
predict true location using all of the maps. We have illustrated prediction not only with point
features such as road intersections but also linear features such as roads and city blocks.

Our model is relatively straightforward to fit since it is built from bivariate Gaussian
processes. We could readily enrich the model to include non-Gaussian error components and
to allow nonstationarity in our spatial process modelling. However, the existing literature, when
it does describe uncertainty, almost always does it through normality. Also while nonstationarity
will often prove important in modelling responses at locations, it is arguably less of an issue for
map positional error.

We note that our model development is based on the assumption of a common reference sys-
tem. The use of the affine transformation would most certainly be inadequate to capture much
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of the systematic error that exists between different coordinate systems. Still the availability of
spatial databases and the ease with which they can be transformed to a common reference system
makes the model widely applicable. Moreover, in principle, we could consider a more complex,
perhaps nonlinear, large-scale transformation if we wish to consider the different sorts of sys-
tematic errors that may arise between different systems. However, we would caution against the
use of our approach for maps with differing reference systems or for maps whose projection and
datum information is unknown.

The primary use for our work is anticipated to involve taking data from a poorer quality
map and introducing it onto a higher quality map where it is absent. In this setting, the higher
quality map plays the role of the control data. For instance, how would we impute a feature on a
TIGER data file to a DLG data file in which it does not appear and characterise the uncertainty in
the imputed location? In this spirit, future work will investigate reconstruction problems: what
would the true current location be of features found on historical maps, features that are no longer
in existence? We also will examine the true location of more general curvilinear features such as
municipal boundaries or shorelines.
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